## Solution to Exercise 2

1. Let $C=\left\{x \in \mathbb{R}^{N}: x_{1}+x_{2} t+x_{3} t^{2}+\cdots+x_{N} t^{N-1} \geq 0, \forall t \in[0,1]\right\}$, which is obviously a cone by definition.
$\forall \boldsymbol{x}=\left(x_{1}, \cdots, x_{N}\right) \in C, \boldsymbol{y}=\left(y_{1}, \cdots, y_{N}\right) \in C$ and $\lambda \in[0,1]$, we have
$\left(\lambda x_{1}+(1-\lambda) y_{1}\right)+\cdots+\left(\lambda x_{N}+(1-\lambda) y_{N}\right) t^{N-1}=\lambda\left(x_{1}+\cdots+x_{N} t^{N-1}\right)+(1-\lambda)\left(y_{1}+\cdots+y_{N} t^{N-1}\right) \geq 0$.
for any $t \in[0,1]$, which implies $C$ is convex.
Suppose $\left\{\boldsymbol{x}^{(n)}\right\}_{n=1}^{\infty} \subset C$ and $\lim _{n \rightarrow \infty} \boldsymbol{x}^{(n)}=\boldsymbol{x}^{*}=\left(x_{1}^{*}, x_{2}^{*}, \cdots, x_{N}^{*}\right)$. For fixed $t \in[0,1]$, we have $\lim _{n \rightarrow \infty} f_{n}(t)=x_{1}^{*}+x_{2}^{*} t+x_{3}^{*} t^{2}+\cdots+x_{N}^{*} t^{N-1}$, where $f_{n}(t)=x_{1}^{(n)}+x_{2}^{(n)} t+\cdots+x_{N}^{(n)} t^{N-1}$. Then $\lim _{n \rightarrow \infty} f_{n}(t) \geq 0, \forall t \in[0,1]$, which implies $C$ is closed.

To show $C$ has non-empty interior, we note that $\boldsymbol{x}_{0}=(1, \cdots, 1) \in \operatorname{int}(C)$. In fact, $\mathbb{B}\left(\boldsymbol{x}_{0}, \frac{1}{2}\right) \subset C$.

It remains to show $C$ does not contain an entire line. Just note that $\forall$ non-zero $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{N}\right) \in C$, we must have $-\boldsymbol{x} \notin C$.
2. Suppose $S$ is affine. We first assume $0 \in S$. Let $x \in S$ and $\gamma \in \mathbb{R}$. Since $0 \in S$, we have $\gamma x+(1-\gamma) 0=\gamma x \in S$. Now, suppose $x, y \in S$. Then $x+y=2\left(\frac{1}{2} x+\frac{1}{2} y\right) \in S$. Hence, $S$ is closed under addition and scalar multiplication. Therefore, $S=0+S$ is a linear subspace. If $0 \notin S$, then $0 \in S-x$ for any $x \in S$. So $S-x$ is a linear subspace. Therefore, $S=x+V$. The other direction is simple, just use the fact that $V$ is a linear subspace.
3. Let $V$ be the subspace parallel to $S$. Then $S-x_{0}=V$. Hence $\operatorname{span}\left\{x_{1}-x_{0}, \ldots, x_{m}-x_{0}\right\} \subseteq$ $V$. Let $x \in V$, then $x+x_{0} \in S$. So

$$
x+x_{0}=\sum_{i=0}^{m} \lambda_{i} x_{i}, \text { where } \sum \lambda_{i}=1
$$

Therefore

$$
x=\sum_{i=1}^{m} \lambda_{i}\left(x_{i}-x_{0}\right) \in \operatorname{span}\left\{x_{1}-x_{0}, x_{m}-x_{0}\right\}
$$

