Solution to Exercise 2

1. Let $C = \{x \in \mathbb{R}^N : x_1 + x_2t + x_3t^2 + \dots + x_Nt^{N-1} \ge 0, \forall t \in [0,1]\}$, which is obviously a cone by definition.

 $\forall \boldsymbol{x} = (x_1, \cdots, x_N) \in C, \ \boldsymbol{y} = (y_1, \cdots, y_N) \in C \text{ and } \lambda \in [0, 1], \text{ we have}$

$$(\lambda x_1 + (1 - \lambda)y_1) + \dots + (\lambda x_N + (1 - \lambda)y_N)t^{N-1} = \lambda (x_1 + \dots + x_N t^{N-1}) + (1 - \lambda)(y_1 + \dots + y_N t^{N-1}) \ge 0.$$

for any $t \in [0, 1]$, which implies C is convex. Suppose $\{\boldsymbol{x}^{(n)}\}_{n=1}^{\infty} \subset C$ and $\lim_{n\to\infty} \boldsymbol{x}^{(n)} = \boldsymbol{x}^* = (x_1^*, x_2^*, \cdots, x_N^*)$. For fixed $t \in [0, 1]$, we have $\lim_{n\to\infty} f_n(t) = x_1^* + x_2^*t + x_3^*t^2 + \cdots + x_N^*t^{N-1}$, where $f_n(t) = x_1^{(n)} + x_2^{(n)}t + \cdots + x_N^{(n)}t^{N-1}$. Then $\lim_{n\to\infty} f_n(t) \ge 0, \forall t \in [0, 1]$, which implies C is aloged implies C is closed.

To show C has non-empty interior, we note that $x_0 = (1, \dots, 1) \in int(C)$. In fact, $\mathbb{B}(\boldsymbol{x}_0, \frac{1}{2}) \subset C$.

It remains to show C does not contain an entire line. Just note that \forall non-zero $\boldsymbol{x} = (x_1, x_2, \cdots, x_N) \in C$, we must have $-\boldsymbol{x} \notin C$.

2. Suppose S is affine. We first assume $0 \in S$. Let $x \in S$ and $\gamma \in \mathbb{R}$. Since $0 \in S$, we have $\gamma x + (1 - \gamma)0 = \gamma x \in S$. Now, suppose $x, y \in S$. Then $x + y = 2\left(\frac{1}{2}x + \frac{1}{2}y\right) \in S$. Hence, S is closed under addition and scalar multiplication. Therefore, S = 0 + S is a linear subspace. If $0 \notin S$, then $0 \in S - x$ for any $x \in S$. So S - x is a linear subspace. Therefore, S = x + V. The other direction is simple, just use the fact that V is a linear subspace.

3. Let V be the subspace parallel to S. Then $S - x_0 = V$. Hence span $\{x_1 - x_0, \ldots, x_m - x_0\} \subseteq$ V. Let $x \in V$, then $x + x_0 \in S$. So

$$x + x_0 = \sum_{i=0}^{m} \lambda_i x_i$$
, where $\sum \lambda_i = 1$

Therefore

$$x = \sum_{i=1}^{m} \lambda_i (x_i - x_0) \in \text{span} \{ x_1 - x_0, x_m - x_0 \}$$